53 research outputs found

    Novel method for vehicle and pedestrian detection based on information fusion

    Get PDF
    A novel approach for vehicle and pedestrian detection based on data fusion techniques is presented. The work fuses information from a 2D laser scanner and a computer camera, to provide detection and classification of vehicles and pedestrians in road environments. Thanks to the data fusion approach, the limitations of each sensor are overcome. Thus reliable system is provided, fulfilling the demands of road safety applications. Classification is performed using each sensor independently. Laser scanner approach is based in pattern matching and vision approach is based in the classical Histogram of Oriented Gradients features approach. A higher stage performs data fusion using Kalman Filter and Global Nearest Neighbors.This work was supported by the Spanish Government through the Cicyt projects (GRANT TRA2010-20225-C03-01) and (GRANT TRA 2011-29454-C03-02). CAM through SEGAUTO-II (S2009/DPI-1509)

    Discrete features for rapid pedestrian detection in infrared images

    Get PDF
    Proceeding of: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems October 7-12, 2012. Vilamoura, Algarve, Portugal.In this paper the authors propose a pedestrian detection system based on discrete features in infrared images. Unique keypoints are searched for in the images around which a descriptor, based on the histogram of the phase congruency orientation, is extracted. These descriptors are matched with defined regions of the body of a pedestrian. In case of a match, it creates a region of interest in the image, which is classified as a pedestrian / non-pedestrian by an SVM classifier. The pedestrian detection system has been tested in an advanced driver assistance system for urban driving.This work was supported by the Spanish Government through the Cicyt projects FEDORA (GRANT TRA2010-20225-C03- 01) and Driver Distraction Detector System (GRANT TRA2011-29454-C03-02), and by the Comunidad de Madrid through the project SEGVAUTO (S2009/DPI- 1509).Publicad

    Contrast invariant features for human detection in far infrared images

    Get PDF
    Proceeding of: 2012 IEEE Intelligent Vehicles Symposium (IV), Alcalá de Henares, Spain, June 3-7, 2012In this paper a new contrast invariant descriptor for human detection in long-wave infrared images is proposed. It exploits local information histogram of orientations of phase coherence. Contrast in infrared images depends on the temperature of the object and the background, which makes gradient based descriptors less robust, especially in daylight conditions. The objective is to obtain a scale, brightness and contrast invariant descriptor that can successfully detect pedestrians in images taken with a cheap, temperature-sensitive, uncooled microbolometer. The descriptor, packed into grids is feed to a Support Vector Machine classifier. The algorithm has been tested in night and day sequences and its performance is compared with a day only descriptor: the histogram of oriented features (HOG).This work was supported by the Spanish Government through the Cicyt projects FEDORA (GRANT TRA2010- 20225-C03-01) and VIDAS-Driver (GRANT TRA2010- 21371-C03-02), and the Comunidad de Madrid through the project SEGVAUTO (S2009/DPI-1509).Publicad

    Detección y localización de obstáculos mediante U-V Disparity con CUDA

    Get PDF
    Tradicionalmente la detección de obstáculos es un tema de investigación de gran interés en visión por computador aplicada tanto a la navegación de robots, como a los sistemas avanzados de ayuda a la conducción (ADAS). Aunque otras tecnologías como por ejemplo el láser, presentan buenos resultados para detectar obstáculos en entornos urbanos, la visión por computador proporciona información 2D &- ó 3D con visión estéreo &- que mejora la interpretación del entorno en exteriores. En este artículo se presenta una implementación en tiempo real de la construcción del mapa denso de disparidad y del U-V disparity, que son utilizados para la detección y localización de obstáculos. Para minimizar los efectos sobre el tiempo de cómputo que ocasionan tanto la construcción del mapa denso de disparidad, como la del U-V disparity, se han implementado ambos mediante el uso de GPUs (Unidades de Procesamiento Gráfico) por su alto rendimiento con algoritmos paralelizables.Publicad

    Deep learning of appearance affinity for multi-object tracking and re-identification: a comparative view

    Get PDF
    Recognizing the identity of a query individual in a surveillance sequence is the core of Multi-Object Tracking (MOT) and Re-Identification (Re-Id) algorithms. Both tasks can be addressed by measuring the appearance affinity between people observations with a deep neural model. Nevertheless, the differences in their specifications and, consequently, in the characteristics and constraints of the available training data for each one of these tasks, arise from the necessity of employing different learning approaches to attain each one of them. This article offers a comparative view of the Double-Margin-Contrastive and the Triplet loss function, and analyzes the benefits and drawbacks of applying each one of them to learn an Appearance Affinity model for Tracking and Re-Identification. A batch of experiments have been conducted, and their results support the hypothesis concluded from the presented study: Triplet loss function is more effective than the Contrastive one when an Re-Id model is learnt, and, conversely, in the MOT domain, the Contrastive loss can better discriminate between pairs of images rendering the same person or not.This research was funded by the Spanish Government through the CICYT projects (TRA2016-78886-C3-1-R and RTI2018-096036-B-C21), Universidad Carlos III of Madrid through (PEAVAUTO-CM-UC3M), the Comunidad de Madrid through SEGVAUTO-4.0-CM (P2018/EMT-4362), and the Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario (FPU14/02143)

    Ehmi: Review and guidelines for deployment on autonomous vehicles

    Get PDF
    Human-machine interaction is an active area of research due to the rapid development of autonomous systems and the need for communication. This review provides further insight into the specific issue of the information flow between pedestrians and automated vehicles by evaluating recent advances in external human-machine interfaces (eHMI), which enable the transmission of state and intent information from the vehicle to the rest of the traffic participants. Recent developments will be explored and studies analyzing their effectiveness based on pedestrian feedback data will be presented and contextualized. As a result, we aim to draw a broad perspective on the current status and recent techniques for eHMI and some guidelines that will encourage future research and development of these systems

    Fusion Based Safety Application for Pedestrian Detection with Danger Estimation

    Get PDF
    Proceedings of: 14th International Conference on Information Fusion (FUSION 2011). Chicago, Illinois, USA 5-8 July 2011.Road safety applications require the most reliable data. In recent years data fusion is becoming one of the main technologies for Advance Driver Assistant Systems (ADAS) to overcome the limitations of isolated use of the available sensors and to fulfil demanding safety requirements. In this paper a real application of data fusion for road safety for pedestrian detection is presented. Two sets of automobile-emplaced sensors are used to detect pedestrians in urban environments, a laser scanner and a stereovision system. Both systems are mounted in the automobile research platform IVVI 2.0 to test the algorithms in real situations. The different safety issues necessary to develop this fusion application are described. Context information such as velocity and GPS information is also used to provide danger estimation for the detected pedestrians.This work was supported by the Spanish Government through the Cicyt projects FEDORA (GRANT TRA2010- 20225-C03-01 ) , VIDAS-Driver (GRANT TRA2010-21371-C03-02 ).Publicad

    Joint Probabilistic Data Association fusion approach for pedestrian detection

    Get PDF
    Abstract: Fusion is becoming a classic topic in Intelligent Transport System (ITS) society. The lack of trustworthy sensors requires the combination of several devices to provide reliable detections. In this paper a novel approach, that takes advantage of the Joint Probabilistic Data Association technique (JPDA) for data association, is presented. The approach uses one of the most powerful techniques of Multiple Target Tracking theory and adapts it to fulfill the strong requirements of road safety applications. The different test performed proved that a powerful association technique can enhance the capacity of Advance Driver Assistance Systems. Two main sensors are used for pedestrian detection: laser scanner and computer vision. Furthermore, the approach takes advantage of the availability of other information sources i.e. context information and online information (GPS). The detections are fused using JPDA, enhancing the capacities of classical pedestrian detection systems, mainly based in visual information. The test performed also showed that JPDA improved the results offered by other data association techniques, e.g. Global Nearest Neighbors.This work was supported by the Spanish Government through the Cicyt projects (GRANT TRA2010-20225-C03- 01) and (GRANT TRA2011-29454-C03-02). CAM through SEGAUTO-II ( S2009/DPI-1509)

    Context Aided Multilevel Pedestrian Detection

    Get PDF
    Abstract: The proposed work, depicts a novel algorithm able to provide multiple pedestrian detection, based on the use of classical sensors in modern automotive application and context information. The work takes advantage of the use of Joint Probabilities Data Association (JPDA) and context information to enhance the classic performance of the pedestrian detection algorithms. The combination of the different information sources with powerful tracking algorithms helps to overcome the difficulties of this processes, providing a trustable tool that improves performance of the single sensor detection algorithms. Context in a rich information source, able to improve the fusion process in all levels by the use of a priori knowledge of the application. In the present work multilevel fusion solution is provided for road safety application. Context is used in all the fusion levels, helping to improve the perception of the road environment and the relations among detections. By the fusion of all information sources, accurate and trustable detection is provided and complete situation assessment obtained, with estimation of the danger that involves any detection.This work was supported by the Spanish Government through the Cicyt projects (GRANT TRA2010-20225-C03-01) and (GRANT TRA 2011-29454-C03-02). CAM through SEGVAUTO-II ( S2009/DPI-1509)

    Enhanced obstacle detection based on Data Fusion for ADAS applications

    Get PDF
    Abstract: Fusion is a common topic nowadays in Advanced Driver Assistance Systems (ADAS). The demanding requirements of safety applications require trustable sensing technologies. Fusion allows to provide trustable detections by combining different sensor devices, fulfilling the requirements of safety applications. High level fusion scheme is presented; able to improve classic ADAS systems by combining different sensing technologies i.e. laser scanner and computer vision. By means of powerful Data Fusion (DF) algorithms, the performance of classic ADAS detection systems is enhanced. Fusion is performed in a decentralized scheme (high level), allowing scalability; hence new sensing technologies can easily be added to increase the trustability and the accuracy of the overall system. Present work focus in the Data Fusion scheme used to combine the information of the sensors at high level. Although for completeness some details of the different detection algorithms (low level) of the different sensors is provided. The proposed work adapts a powerful Data Association technique for Multiple Targets Tracking (MTT): Joint Probabilistic Data Association (JPDA) to improve the trustability of the ADAS detection systems. The final application provides real time detection of road users (pedestrians and vehicles) in real road situations. The tests performed proved the improvement of the use of Data Fusion algorithms. Furthermore, comparison with other classic algorithms such as Global Nearest Neighbors (GNN) proved the performance of the overall architecture.This work was supported by the Spanish Government through the Cicyt projects (GRANT TRA2010-20225-C03-01) and (GRANT TRA 2011-29454-C03-02). CAM through SEGAUTO-II (S2009/DPI-1509)
    • …
    corecore